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The characterization of the metabolome is a critical aspect in basic research and plant breeding. In

this work, the putative application of metabolomics for phenotyping closely related genotypes has

been tested. Crude extracts were profiled by LC-MS and GC-MS, and mass data extraction was

performed with XCMS software. Result validation was achieved with principal component analysis

(PCA). The ability of the profiling methodologies to discriminate plant genotypes was assessed after

hierarchical clustering analysis (HCA). Cluster robustness was assessed by a multiscale bootstrap

resampling method. A better performance of LC-MS profiling over GC-MS was evidenced in terms

of phenotype demarcation after PCA and HCA. Citrus demarcation was similarly achieved

independently of the environmental conditions used to grow plants. In addition, when all different

locations were pooled in a single experimental design, it was still possible to differentiate the three

closely related genotypes. The presented methodology provides a fast and nontargeted workflow as

a powerful tool to discriminate related plant phenotypes. The novelty of the technique relies on the

use of mass signals as markers for phenotype demarcation independent of putative metabolite

identities and the relatively simple analytical strategy that can be applicable to a wide range of plant

matrices with no previous optimization.
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INTRODUCTION

Plant metabolomes have been described as bridges between
genotypes and phenotypes, reflecting different biological end
points as the downstream result of gene expression. Extensive
knowledge on metabolic flows could allow assessment of geno-
typic or phenotypic differences betweenplant species. In addition,
target metabolites have been analyzed as nutritional and/or
agronomical biomarkers to classify different crop cultivars or
to optimize growth conditions. Recently, metabolomics has
arisen as a key functional genomics tool and has been successfully
applied to assess differences in metabolite composition in distinct
tomato cultivars (1) and introgression lines (2) and,more recently,
between different Arabidopsis species (3). Besides its use as a
breeding or selection tool, metabolomics techniques have also
been used to evaluate stress responses in barley (4), Citrus (5),
Medicago truncatula (6), andArabidopsis thaliana (7). In addition,
it has been discussed that metabolomes mirror genetic and/or
environmental changes to a great extent and, therefore, describe
more accurately the phenotype of a given organism (8). The use
of these techniques could help in the development of rational
breeding programs (9), especially when desirable agronomical or
nutritional traits do not correlate with specific DNA markers.

Overall, metabolomics represent a useful tool to evaluate the
contribution of environmental and genetic factors to the differ-
ences in metabolite composition or content (10, 11).

The final goal of a metabolomics analysis is the identification
and quantification of all metabolites in a given organism in
addition to the assessment of the metabolic relationships among
them. However, this has not been possible to date because most
metabolites are yet unknown and the available analytical techni-
ques do not allow such exhaustive metabolite detection (12).
Therefore, the most widely used techniques, known asmetabolite
profiling (13), consist in the analysis of the maximum number of
metabolites in a given sample. Mass spectrometry (MS) coupled
to separative techniques such as HPLC, GC, or capillary electro-
phoresis is used for this purpose (14). Indeed, HPLC coupled to
hybrid quadrupole time-of-flightmass spectrometers (QTOF) are
among the most versatile metabolite profiling techniques because
LC is the most compatible technique with biomolecules, and the
accurate mass measurement, true isotopic pattern recognition,
and high sensitivity provided by QTOF instruments are suitable
for calculations on elemental composition of mass signals (15).

An important factor inMS-basedmetabolomics is the number
of detected signals. Sample collection and extraction steps are
crucial and may definitely influence the results obtained. In this
sense, efforts to standardize procedures for fresh tissue handling
and extraction have been done tominimizemanipulation of plant
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material (13,14).However, it is not clearwhether these techniques
are suitable for all classes of metabolites or tissues. In addition,
the parallel use of different hyphenated techniques such as GC-
MS and LC-MS could be a good choice to better profile different
classes of compounds. Another important aspect in the optimiza-
tion of a metabolite profiling method is the extraction procedure
because different plant matrices can exhibit a notable complexity
when injected without purification. In this sense, a separation
technique precedingmass spectrometry is often used, and it is also
a critical step in determining the exhaustiveness of the method.
However, flow injection electrospray ionization coupled to mass
spectrometry has been used as a fingerprinting tool due to the
relatively short acquisition time (12), although ion suppression
upon ionization of crude extracts may reduce the number of
detected mass signals (16). When liquid chromatography is used,
the polarity of the stationary phase as well as the separation
gradient used will condition the performance of the mass spectro-
meter and the results of the metabolite profiling. For example,
when reversed phase liquid chromatography coupled to electro-
spray ionization is used, highly polar compounds and volatiles
cannot be detected. Other chromatographic techniques, such as
GC, do not allow the injection of aqueous or nonvolatile samples,
therefore requiring a derivatization step. Generally, GC-MS
techniques offer a relatively more robust chromatography and
greater separation efficiency, resulting in reproducible retention
times of hundreds of mass peaks, together with the availability of
reference compound libraries (10, 13).

The extraction of mass signals from raw data files after
acquisition is another limiting stepbecause noabsolutely accurate
methodology currently exists (see ref 17 for a recent review).
When dealing with LC-MS data, different software such as the
commercially available Markerlynx (Micromass Ltd., Manche-
ster, U.K.) or freeware such as metAlign (Plant Research Inter-
national, Wageningen, The Netherlands), MzMine (18), or
XCMS (19) perform the automatic extraction, alignment, and
retention time correction of chromatographic peaks within
individual mass-to-charge values using different algorithms.
Another software package for deconvolution of chromatographic
peaks is AMDIS (NIST). This software automatically identifies
and annotates mass signals in GC-MS experiments; however, it
does not perform alignment and retention time correction of
chromatographic features.

The putative application of metabolomics for phenotyping of
closely related species has been tested in this work. To make
results widely applicable, Citrus genotypes have been used as a
model due to their complex matrices and also their economical
importance. In addition, two external groups have been added to
test the performance of the clustering procedure: Arabidopsis
thaliana L. Heyhn. ecotype Columbia and Prunus persica L. To
obtain a more comprehensive view of metabolite profiling, two
techniqueswere used: GC-MS andLC-MS. The effectiveness and
accuracy to distinguish among species and to highlightmetabolite
differences are discussed.

MATERIALS AND METHODS

Plant Material and Experimental Designs. Eight-month-old seed-
lings of P. persica L., citrumelo CPB 4475 (Citrus paradisi L. Macf. �
Poncirus trifoliata L. Raf.), Carrizo citrange (P. trifoliata L. Raf.� Citrus
sinensis L. Osb.), and Cleopatra mandarin (Citrus reshni Hort. ex Tan.)
were purchased from a commercial nursery and immediately transplanted
to 2 L pots filled with a mixture of peat moss/perlite/vermiculite (8:1:1) as
substrate. Seeds ofA. thalianaL.HeyhnColumbia-0 ecotypewere surface-
sterilizedwith 70%EtOH followedby 20%bleach and, finally, rinsedwith
sterile water and sown in moistened sterile peat moss. After 2 days at 4 �C
to break dormancy, seeds were germinated in a growth chamber at 22 �C

under a 10 h photoperiod. After 1 week, seedlings were individually
transplanted to 0.2L pots filledwith the same substrate as forwoody geno-
types and transferred to the greenhouse described under Experiment 1.

Experiment 1. After transplanting, Citrus and Prunus plants were
grown for 2 months before harvesting, whereas 1-week-old Arabidopsis
plants were grown in the same conditions for 5 weeks. Day/night
temperatures within the greenhouse were 23 ( 2/18 ( 2 �C with 70-
80%relative humidity.Natural lightwas used (with a photoperiod varying
approximately from 10 to 12 h).Citrus and Prunus seedlings were watered
twice a week using 0.5 L of a half-strength Hoagland solution (26).
Arabidopsis pots were arranged in 30� 60 cm trays and regularly watered
from below using 1 L of a 1/10 dilution of Hoagland nutrient solution as
reported previously (15).

Throughout the experimental period, all groups of plants were appar-
ently healthy without any visible damage. Fifteen plants of each woody
genotype (approximately 1 m tall) were individually harvested, and only
adult leaves collected. For Arabidopsis, rosettes of 15 groups of plants
(three plants per group) were independently harvested. All samples were
rinsed with distilled water, blotted dry, and immediately frozen in liquid
nitrogen. Tissue was then ground to a fine powder and stored at -80 �C
until analyses.

Experiment 2. Plants of the threeCitrus genotypes were cultivated for
3 weeks outdoors, in the experimental field of the Jaume I University
(Castellón, Spain; 39� 590 N, 0� 020 W) and, therefore, exposed to the
variable environmental conditions (during the experimental period, aver-
age, maximum, and minimum air temperatures were 20.9, 24.3, and
15.7 �C, respectively). Plants were of the same age as in experiment 1
and were cultivated in the same pots and substrate and with the same
watering program described above. Adult leaves of 15 plants per genotype
were independently harvested.

Experiment 3. Plants identical to those described under Experiment 2
were cultivated for 3 weeks outdoors, in the I.VIA experimental field
(Moncada, Valencia, Spain; 39� 320 N, 0� 230 W) located 70 km south of
Castellón. During the experimental period, average, maximum, and
minimum air temperatures were 24.9, 27.9, and 20.4 �C, respectively). In
this case, plants were cultivated in the same pots but with perlite as
substrate. Plants were watered 5 days a week with 0.5 L of the watering
solution described above. Adult leaves of 15 plants per genotype were
independently harvested.

Extraction and Fractionation. Frozen plant tissue powder (0.5 g)
was extracted in 5 mL of 80%MeOH (HPLC grade, Panreac, Barcelona,
Spain) using a tissue homogenizer (Ultra-Turrax, Ika-Werke, Staufen,
Germany) in an ice bath to prevent sample heating. After centrifugation to
pellet debris, supernatant was recovered and evaporated at room tem-
perature using a centrifuge vacuum evaporator (RT 2.2., Jouan, Saint
Herblain, France). The dry residue was resuspended in 2 mL of a 40%
MeOH solution and subsequently fractionated with C18 cartridges
(100 mg, BondElut, Varian Inc., Palo Alto, CA). Nonretained eluates
(defined as the polar fraction) from C18 cartridges were collected and
evaporated as above. The retained fraction (defined as nonpolar) was
eluted with 2 mL of 100% MeOH, collected, and evaporated to dryness.

When LC-MS was used, polar and nonpolar fractions were resus-
pended in 1 mL of 10%MeOH or 50%MeOH, respectively, and filtered
through cellulose acetate filters (0.22 μm pore size) before injection in the
HPLC.ForGC-MSanalyses, both fractionswere reconstituted in 30μLof
methoxamine hydrochloride (Sigma-Aldrich, Madrid, Spain) in pyridine
(20 mg mL-1, Sigma-Aldrich) and kept for 90 min at room temperature.
After evaporation under vacuum, dry residues were trimethylsylilated by
adding 40 μL ofMSTFA (Sigma-Aldrich) followed by incubation at 37 �C
for 30 min. For all experiments, 15 independent biological samples were
analyzed by LC-MS and 9 by GC-MS to prevent instrument overloading.

LC and GC Conditions. As a preliminary program for LC optimiza-
tion, a 20 μL aliquot of each fraction was injected onto a HPLC system
(Waters Alliance 2690, Milford, MA). UV profiles (at 290 and 350 nm)
andmass spectra (between 50 and 900 arbitrary mass units) were collected
over a 60 min period using MeOH (solvent A) and 0.01% acetic acid in
H2O (solvent B) and following a linear gradient, increasing solvent A from
5 to 95% (all solvents were ofHPLC grade). The gradients were optimized
to meet an agreement between short run time and good chromatographic
resolution. Therefore, two final programs were chosen: Gradient 1 for
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polar fractions was 95:5 (B/A) to 20:80 in 20 min, 10:90 (20-23 min), and
95:5 (23-26min).A 4min re-equilibration periodwas established between
injections. Gradient 2 for nonpolar fractions lasted for 35 min and started
with a 50:50 (B/A) proportion, in 20 min, 5:95, and then this proportion
maintained for 2 min before initial conditions were restored in 5 min.
Finally, a period of 8 min was established to re-equilibrate the column.
Separations were carried out at room temperature using a 5 μmKromasil
100 C18 column (100 � 2.1 mm, Scharlab, Barcelona, Spain) at a flow
rate of 0.3 mL min-1. Effluents were injected in the QTOF (QTOF I,
Micromass Ltd.) through an orthogonal Z-spray electrospray interface
using N2 as both nebulization and desolvation gas. Nebulizer and dry gas
flows were adjusted to 90 and 800 arbitrary units, respectively. Data were
acquired in continuousmodewithin amass scan range between 50 and 900
atomic mass units (amu) in both positive and negative electrospray mode
at 4000 V spray and 25 V cone voltages.

ForGC-MSanalyses, polar and nonpolar fractions were independently
injected into a Star 3400 CX gas chromatograph coupled to a Saturn ion
trap mass spectrometer (Varian). Helium inlet pressure was set at 85 kPa,
and the injector, interface, and ion source temperatures were 250, 250, and
200 �C, respectively. Samples (2 μL) were injected in splitless mode
and separated in a 30 m length polymeric column (VF-5 ms, 0.25 mm �
0.10 μm, Varian) using helium as a carrier gas. After optimization of GC
temperature ramps to obtain good peak resolution, a linear temperature
gradient from 40 to 280 at 8 �C/min was set in the oven.Mass spectra were
collected over a 22-25 min period; the solvent cut was 4 min. Data were
recorded within the 100-650 amu.

Data Acquisition and Analysis. LC-MS data were acquired and
centroided using Masslynx 4.1 software (Micromass Ltd.). Centroidiza-
tion of raw files was accomplished using an internal lock-mass reference,
L-tri-iodotyrosine, that was postcolumn injected into the ion source (m/z
433.8150 [ESIþ], 431.8594 [ESI-]) during sample analyses.

The stability of the LC-MS system was assessed by extracting the lock-
mass signal intensity and plotting it over time. Signal intensity plots from
different samples overlapped without significant variation among them
(only samples from the same genotype were considered to discard side
effects derived from ion suppression due to different matrix effects). In
addition, to assess variations inLCandGCperformance, a set of standard
analytes were injected in three replicate batches at the beginning, in the
middle, and at the end of each sample list. Whereas kinetin, biochanin A,
rutin, o-anisic acid, ferulic acid, and N-(3-indolylacetyl)-L-phenylalanine
(Sigma-Aldrich) were used in LC-MS, only the last three compounds were
reliably detected in GC-MS. In LC-MS, relative standard deviations
(RSD) for peak areas and for retention times varied between 3.80 and
17.34% and between 0.21 and 0.49%, respectively. For GC-MS, the same
parameters showed RSD values varying between 0.69 and 9.28% and
between 0.05 and 0.21%, respectively.

Raw Mass Data Preprocessing and Extraction. Centroided files
were subsequently transformed into netCDF format using the Databridge
utility in the Masslynx package. Native MS files from Varian Saturn GC-
MS instrument were converted into raw Xcalibur 1.4 (Thermo Fisher
Scientific, Inc.,Waltham,MA) files and subsequently to netCDFusing the
File Converter tool. After conversion, files were checked for similarity to
original files using Insilicos viewer 1.4.5 (Insilicos LLC, Seattle,WA). This
conversion is needed prior to preprocessing, peak extraction, retention
time correction, and alignment with XCMS (19). Files were arranged in
one folder thatwas set as the file source. Peakswere subsequently extracted
using the default “matchedFilter” method. The optimized parameters
were as follows: signal-to-noise ratio = 4; full width at half-maximum
(fwhm) = 30 (for LC data and 20 for GC data); width of them/z range=
0.1 (step parameter); “bin” was used as the profiling method, which
performed adequately for both Micromass and Varian Saturn netCDF
centroided data. The m/z difference was set at 0.1. XCMS analyses were
carried out under R 2.5.1 environment (www.bioconductor.org) running
in an Intel Core2 Duo T7200 1.8 GHz and 2Gb RAM. After peak
extraction, grouping and nonlinear retention time correction of peaks was
accomplished in three iterative cycles with descending bandwidth (bw).
This was accomplished bymanually decreasing the bwparameter (from30
to 5 s). The performance of the alignment and retention time correction
procedure was monitored after each round by checking the number of
aligned peak groups and byplotting the corrected retention time versus the
retention time deviation (in seconds). The resulting peak list was further

processed using Microsoft Excel (Microsoft Corp., Redmond, WA). In
this final report, the average area, the maximum, andminimumm/z values
and corrected retention time are shown (Supporting Information Files
5-10). Absolute peak area values were autoscaled (the mean area value of
each feature throughout all samples was subtracted from each individual
feature area and the result divided by the standard deviation) as in ref 20
prior to principal component analysis.

Principal Component Analysis (PCA) and Box-Whisker Plots.
In the Microsoft Excel spreadsheets, all missing peaks (NA) were
substituted by a minimum value (10) and subsequently subjected to
PCA using Ginkgo Analysis System software (this multiplatform applica-
tion is available at http://biodiver.bio.ub.es/ginkgo/index.html). In these
analyses, “mass value retention time” was used as label for each feature
(variables) in injected samples (individuals). To assess normality of data
sets, area values were normalized as log2 and directly used to plot box-
whisker graphs (see Supporting Inforamtion Files 11 and 12) using Sigma-
Plot v. 9.0 for Windows (Systat Software, Inc., Chicago, IL).

Hierarchical Clustering and Bootstrap Test. The spreadsheets
generated above were subjected to hierarchical clustering using the
publicly available microarray analysis software DChip (27). This software
provides a fast and user-friendly way to calculate and visualize sample
clusters. Distances between samples and signals in data sets were calcu-
lated as 1-correlation; subsequently, a centroid clustering method was
performed. Clusters were ordered by tightness. P value thresholds of
0.001 for signal enrichment function and 0.01 for sample were set. The
distance cutoff value used to establish the different sample clusterswas 0.5.
Cluster robustness was assessed with a multiscale bootstrap resampling
test using the pvclust R package according to ref 28 on autoscaled data
setting a nboot value of 1000 (number of iterations).

RESULTS AND DISCUSSION

In modern agriculture, the characterization of the metabolome
as a phenotyping trait is becoming an essential aspect (9). The full
development of these techniques would support breeding and
selection programs and also facilitate the differentiation between
traditional and biotechnology-derived crops (9). In the citrus
industry, important agronomical traits do not usually correlate
with specific DNA markers, and the development of accurate
identification methods has been either unsuccessful (21) or needed
important investment in transcriptomics platforms (22). In the
present work, metabolite profiles from a set of closely related
Citrus genotypes were analyzed along with two external groups by
LC-MS and GC-MS. The aim of this research was to establish a
reliable, reproducible, and nontargeted metabolite profiling meth-
odology to differentiate among different species. In this approach,
we analyzed five genotypes: two hybrids, citrumelo CPB4475 and
Carrizo citrange, that share oneparental;Cleopatramandarin; and
twononrelated genotypes,Arabidopsis thalianaandPrunus persica.

Comparison of Metabolite Profiles. As a first step in the
development of the metabolomics procedure used in this work,
LC and GC gradients were optimized to reduce time of chroma-
tographic runs. This prevented overloading of the mass spectro-
meter with nonvolatile sample residues and a subsequent reduc-
tion in sensitivity (see Materials and Methods). In addition, a
4 min solvent delay step was set to avoid accumulation of salts in
the ion source. As a result of the optimization process, two short
LC gradients were obtained for polar (26 min) and nonpolar (35
min) fractions, respectively, which allowed the analysis of several
samples per daywithout significant reduction in sensitivity and/or
accuracy (data not shown). After the inspection of TIC chro-
matograms from Citrus and Prunus extracts, it could be stated
that these showed an extraordinary complexity when com-
pared to those from Arabidopsis (Figure 1). It could be also
observed that LC-MS profiles of Citrus genotypes were very
similar among them. However, the analysis of TIC chromato-
grams did not provide much information regarding differences
among plant genotypes, and a deeper examination was needed.
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Intra- and Interspecies Variability. As a first approach to
account for overall variability among plant genotypes, normal-
ized area values from experiment 1 were subjected to PCA
(Figure 2). As a general aspect, high variability could be explained
with only three components. However, not always a high
cumulative variability was associated with a better resolution of
plant genotypes. As an example, PCA of LC-MS positive mode
profiles from nonpolar fractions yielded the highest cumu-
lative variability (91.9% for 1223 mass features) but, however,
could not resolve well Arabidopsis and Prunus samples. This
was associated with a more important involvement of polar

compounds in the discrimination of plant genotypes. In LC-MS
metabolite profiles from polar fractions, component 1 resolved
well Citrus from non-Citrus plant genotypes, whereas, in
general, component 2 resolved Citrus genotypes. Similar results
were observed after PCA of LC-MS metabolite profiles from
nonpolar fractions with component 1 showing higher variability
values. Analysis ofGC-MSmetabolite profiles rendered different
results. PCA of GC-MS profiles from polar fractions rendered
results comparable to those of LC-MS, where Citrus and non-
Citrus genotypes resolved well along component 1 (55.8%) and
Citrus genotypes resolved along component 2. On the contrary,
PCA from nonpolar fractions did not show any clear trend, and
although cumulative variability was high (70.9%), no resolution
of plant genotypes could be achieved. Similar results, regarding
resolution of Citrus genotypes, were obtained in LC-MS and
GC-MS profiles from polar and nonpolar fractions of Citrus
genotypes cultivated in two different locations (Supporting Infor-
mation Files 1 and 3). These results validated those obtained in
experiment 1. In addition, a deeper analysis of 135 files obtained
from the three experiments (3 locations� 3Citrus genotypes� 15
sample replicates per genotype) associated component 1 with
genotype discrimination, whereas component 2 was related to
environmentally driven variation (Figure 3). These results showed
that, for LC-MS profiles, genotype variability ruled over envi-
ronment, although it was still possible to differentiate different
environments within each genotype group.

Cluster Analysis of Metabolite Profiles. Hierarchical clustering
analysis (HCA) was performed on autoscaled data (20). As an
example, Figure 4 shows a green-black-red diagram illustrating
the distribution of signal intensities. Clustering of samples
from experiment 1 situated citrumelo and Carrizo genotypes very
close in all LC-MS-based profiles (Figure 5), whereas Cleopatra
always clustered close to Arabidopsis and Prunus, although
separately from these two species. In addition, as indicated
above, HCA on nonpolar profiles showed a closer relationship
between Arabidopsis and Prunus than that shown by polar
profiles. This was correlated with previous results of PCAs.
HCA of polar GC-MS-derived data sets grouped well plant
genotypes (Figure 6), although not as efficiently as those derived
from LC-MS. On the contrary, HCA from nonpolar fractions
showed twomajor clusters,Citrus and non-Citrus genotypes, and
only in the latter was it possible to differentiate Arabidopsis and
Prunus genotypes. HCA performed on data from experiments
2 and 3, in which Citrus genotypes were cultivated in different
environmental conditions, rendered very similar results to those
obtained in experiment 1. In general, HCA performed on LC-
MS-derived data sets rendered a better resolution of plant
genotypes than GC-MS-derived ones (Supporting Information
Files 2 and 4). High bootstrap score values (between 80 and
100%) confirmed clustering robustness in the three experiments
reported.

A similar approach was followed in ref 7 to identify new
compounds with low molecular mass involved in responses to
wounding in Arabidopsis. In this previous work, a rapid LC
gradient (10 min) was used to analyze metabolites and to
characterize profiles by means of PCA and HCA. However, only
major constituents were detected because ion suppression was
high, presumably due to matrix effects. The methodology pre-
sented in this paper efficiently differentiated the two genetically
related genotypes (citrumelo and Carrizo) despite that, after
HCA, they clustered together. As a result of the greater differ-
ences with Citrus, Prunus and Arabidopsis occurred together in
the HCA but clearly differentiated from each other. It is inter-
esting to note that the other Citrus genotype, Cleopatra, was
apart from the rest of the Citrus species but also from the two

Figure 1. Typical TIC chromatograms of the polar fractions acquired
with LC-MS in positive ionization mode: (a) Arabidopsis, (b) Prunus,
(c) citrumelo, (d) Cleopatra, and (e) Carrizo leaf extracts. Mass data were
acquired within a mass range of 50-900 amu.



7342 J. Agric. Food Chem., Vol. 57, No. 16, 2009 Arbona et al.

external groups. Citrus demarcation was similarly achieved
independently of the environmental conditions used to grow
plants. Therefore, when Citrus genotypes were cultivated in two
additional locations (with different environmental conditions)
and studied as separate experiments, the ability to discriminate

plant genotypes was maintained between the two techniques
assayed. Similar results were obtained when all three locations
were pooled in a single experimental design.

Exclusive Features. A number of chromatographic features,
whichwere only consistently found in one genotype and not in the

Figure 2. PCAplot showing threemajor sources of variability among citrumelo, Carrizo, Cleopatra,Prunus, andArabidopsisgenotypes after LC-MS in positive
mode of (a) polar and (b) nonpolar fractions; LC-MS in negative mode of (c) polar and (d) nonpolar fractions; GC-MS of (e) polar and (f) nonpolar fractions
after derivatization. Percentage of variability explained is given on each axis.
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rest, were observed. Features were selected for their representa-
tion throughout plant samples. Using MS Excel, cells containing
a value different from “NA” were labeled “1”, whereas the rest
were automatically labeled “0”. Selected cells were grouped by
genotypes and features chosenby their presence in at least 12of 15
samples in LC-MS and 7 of 9 samples in GC-MS. Similar

numbers of exclusive features were found in polar and nonpolar
fractions (Tables 1-3). However, when each genotype was
checked, there was no correlation between the amounts of
exclusive features found in both fractions. This might indicate
an uneven contribution of polar and nonpolar metabolites to the
demarcation of genotypes, as observed previously after PCA and

Figure 3. PCA plot showing three major sources of variability among citrumelo, Carrizo, and Cleopatra when data from experiments 1, 2, and 3 were pooled
together after LC-MS in positive mode of (a) polar and (b) nonpolar fractions; LC-MS in negative mode of (c) polar and (d) nonpolar fractions; GC-MS of
(e) polar and (f) nonpolar fractions after derivatization. Within Cleopatra, citrumelo, and Carrizo (4,O,b) represent experiment 1, ([,0,9) experiment 2,
and ([, 2, 1) experiment 3. Percentage of variability explained is given on each axis.
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HCA. In the positive polar profiles, Cleopatra and Prunus
showed the maximum number of exclusive features (133 and
120, representing 11.8 and 10.7% of the total number of detected
chromatographic features, respectively), whereas in the nonpolar
fraction, Carrizo (150, 12.26%) and Cleopatra (105, 8.56%)
showed the maximum number of exclusive features. In the
negative ionization profiles of both polar and nonpolar fractions,
the amount of exclusive features (Table 2) wasmuch lower than in
the positive profiles (Table 1). This could account for the positive
ionization mode having a better performance than negative
ionization in differentiating plant genotypes. In this sense, the
percentage of exclusive features could be more important be-
cause, in most cases, it was related to a better discrimination of
genotypes (i.e., in samples from Cleopatra and Prunus, a higher
percentage of exclusive features was found in the LC-MS positive
polar fraction, and, accordingly, both yielded tighter clusters than
the rest of genotypes). This is of special interest when composi-
tional differences demarcate cultivars or genetically engineered
crops (9). In the GC-MS-based profiles from polar fractions, the
number of exclusive features per genotype was in the same range

as LC-MS profiles, whereas GC-MS profiles from nonpolar
fractions yielded, in general, a much lower number (Table 3).
Nevertheless, differences in the percentage of exclusive features
per genotypewere found inGC-MSprofiles. In the polar fraction,
208 exclusive features were found inArabidopsis, a number much
higher than in the rest of genotypes. On the contrary, in the
nonpolar fraction, 133 exclusive features were found in citrumelo
and only 2 or 3 in the rest of the genotypes. This confirmed the
uneven contribution of the polar and nonpolar fractions to the
overall metabolite load. Similar numbers of exclusive signals were
found in experiments 2 and 3 (data not shown). Despite the
importance of exclusive features in genotype demarcation, it
should be noted that the amount of these signals will be probably
higher than the actual number of exclusive metabolites. Selected
features could likely be a combination ofmetabolites, adducts, and
fragments. In addition, it is well-known that GC-MS data pro-
duce many mass signals per peak and, therefore, it is particularly
difficult to filter out a unique mass for a single metabolite.

As extracted from results, sample fractionation using C18
cartridges appears to be a suitable methodology to evaluate the

Figure 4. Green-black-red diagram from the standardized polar fractions analyzed by LC-MS in negative mode. Intensities are expressed as a color code,
where red is the maximum intensity and green is the lowest.
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relative contribution of polar and nonpolar metabolites to geno-
typic differences. It is widely accepted that GC-MS is better suited
formetabolites derived from theprimarymetabolism suchas sugars
or amino acids, whereas reversed phase LC-MS covers a higher
percentage of the secondary metabolism, excluding highly polar
compounds. Secondarymetabolism exhibits amyriadof chemically
diverse metabolites that are specific to the different plant genotypes
(such as polyphenols, alkaloids, glucosinolates).However, previous
reports highlighted the importance of primary polar metabolites
(such as sugars, TCA intermediates, amino acids, and/or poly-
alcohols) as taxonomical and physiological traits (23). To undeni-
ably prove the importance of secondary versus primarymetabolism
in our experimental system, further work should be directed to
identify a subset of metabolites from both types of metabolism and
study their relative coverage by LC-MS or GC-MS.

Figure 5. Hierarchical trees of the five genotypes based on metabolite
profile patterns after extraction of signals corresponding to LC-MS in
positive mode of (a) polar and (b) nonpolar fractions; LC-MS in negative
mode of (c) polar and (d) nonpolar fractions. On selected nodes, values
indicate bootstrap score values.

Figure 6. Hierarchical trees of the five genotypes based on metabolite
profile patterns after extraction of signals corresponding to GC-MS of (a)
polar and (b) nonpolar fractions after derivatization. On selected nodes,
values indicate bootstrap score values.

Table 1. Exclusive Features from Positive Electrospray LC-MS Data

LC-MS positive polar fraction LC-MS positive nonpolar fraction

amounta percentageb amounta percentageb

Carrizo 87 7.75 150 12.26

Ccitrumelo 54 4.81 100 8.18

Cleopatra 133 11.85 105 8.59

Arabidopsis 37 3.30 74 6.05

Prunus 120 10.70 44 3.60

total 1122 1223

a Total amount of exclusive features in positive LC-MS data from experiment 1.
b Percentage of exclusive features in each genotype from the total of detected
features.

Table 2. Exclusive Features from Negative Electrospray LC-MS Data

LC-MS negative polar fraction LC-MS negative nonpolar fraction

amounta percentageb amounta percentageb

Carrizo 9 1.93 7 1.83

citrumelo 7 1.50 13 3.39

Cleopatra 17 3.64 31 8.09

Arabidopsis 9 1.93 2 0.52

Prunus 35 7.49 8 2.09

total 467 383

a Total amount of exclusive features in negative LC-MS data from experiment 1.
b Percentage of exclusive features in each genotype from the total of detected
features.
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It was beyond the scope of this work to annotate mass signals
as individual metabolites as they were used only as markers for
genotype classification. The metabolic differences highlighted in
this work are consistent with previous data where significant
physiological differences were found among the same Citrus
genotypes in response to flooding and salt stress (24,25). In those
studies, citrumelo and Carrizo Citrus genotypes exhibited similar
physiological responses to stress, whereas Cleopatra showed a
more specific behavior. Under salinity stress, Cleopatra exhibited
a more tolerant behavior than that of Carrizo and citrumelo,
which was related to a rapid reduction of net photosynthetic rate,
stomatal conductance, and performance of PSII and photosyn-
thetic efficiency. The other Citrus genotypes showed a lower
capability to adjust stomata and PSII to the new conditions (25).
Under soil flooding, Carrizo and citrumelo showed similar
responses, whereas Cleopatra was unable to activate the cellular
antioxidant machinery (24).
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